skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Catalano, Luca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the anisotropic thermal expansion behavior of a co- crystalline system composed of 4,40-azopyridine and trimesic acid (TMA-azo). Using variable-temperature single-crystal X-ray diffrac- tion (SC-XRD), low-frequency Raman spectroscopy, and terahertz time-domain spectroscopy (THz-TDS), we observe significant temperature-induced shifting and broadening of the vibrational absorption features, indicating changes in the intermolecular potential. Our findings reveal that thermal expansion is driven by anharmonic interactions and the potential energy topography, rather than increased molecular dynamics. Density functional the- ory (DFT) simulations support these results, highlighting significant softening of the potential energy surface (PES) with temperature. This comprehensive approach offers valuable insights into the relationship between structural dynamics and thermal properties, providing a robust framework for designing materials with tailored thermal expansion characteristics. 
    more » « less
  2. Abstract Organic semiconductors (OSCs) have garnered significant attention due to their potential use in flexible, lightweight, and cost‐effective electronic devices. Despite their promise, the assembly of organic molecules into the condensed phase promotes a diverse set of lattice dynamics that introduce a detrimental modulation in the intermolecular electronic structure—termed dynamic disorder—that results in charge carrier mobilities that are orders of magnitude lower than inorganic semiconductors. This dynamic disorder is generally associated with low‐frequency phonons, yet whether a small subset of modes or a broad range of phonons  drives dynamic disorder remains contested. Resolving this debate is critical for defining how targeted phonon engineering could practically improve OSC performance. In this review, we explore progress toward uncovering the interplay between lattice dynamics and charge transport in OSCs, focusing on the critical role of thermally activated phonons. We describe the powerful insight that mode‐resolved analyses of electron–phonon interactions lends toward the rational design of new materials. We highlight recent efforts to achieve this, showcasing proposed strategies to mitigate dynamic disorder through molecular and crystal design. This work offers an overview of the insight gained toward understanding the fundamental mechanisms governing charge transport in OSCs and outlines pathways for enhancing performance via targeted manipulation of interatomic/intermolecular interactions and resulting phonon modes. 
    more » « less